第四百二十二章 提出问题和解决问题(4 / 5)

轻版的格罗滕迪克。

“皮埃尔,你为什么会这么说?”

法尔廷斯好奇道。

德利涅扭头看了法尔廷斯一眼,微笑道:“我从他眼中看到了热情和野心,他现在才二十五岁,至少还有二十年的巅峰期,你能想象,二十年内他能做出多少成就吗?就算他彻底统一了代数与几何这两大基础学科,也并不让我感觉到意外。”

庞学林没有理会台下的喧闹声,微微一笑,说道:“我觉得在未来的一百年,以下问题将是我们数学界急需解决的一些难题。第一,岩泽理论的主猜想。”

“数论中,岩泽理论是理想类群的伽罗瓦模理论,是日本数学家岩泽健吉在1950年末期发展起来的一套研究数域(即q的有限扩张)的zp扩张的算术性质的理论,最常见的zp扩张是所谓的分圆zp扩张。这类域是德国数学家库默尔为证明费马大定理而首先研究的。事实上,如果整数环z[c?]是唯一分解环,那么在证明费马大定理的征途中就不会遇到那么多的困难。

分圆zp扩张就是下述分圆域的扩张:

kqcpc…cknqc;+1??cxooqcp~,

……

岩泽主猜想或称主猜想,即岩泽理论的主要猜想)是说:chachs/c。可以看出,a说明的是数域的理想类群,是一个纯粹的代数对象.而分圆单位本质上是一个解析对象。事实上,令p,scs.1p~s∑1/ns,此函数称为v进c函数,它是上是连续函数,并且其在负整数处的值可以用的一个首一多项式的插值来表示。

p进函数是p进i函数的一个例子,它体现了对应数域的解析性质。

岩泽理论从诞生一开始就是数论研究的重要工具。在1972年,azur建立了椭圆曲线的岩泽理论,并提出了虚二次域上的主猜想.后来人们又提出了许多其他形式的主猜想,包括otive上的主猜想等。p进伽罗瓦表示上的岩泽理论的研究对于p进bsd猜想、serre猜想等都非常重要.

1983年,azur和iles使用深刻的代数几何办法证明了岩泽主猜想。利用科利瓦金的欧拉系的办法,rub证明了虚二次域上的主猜想,并给出了分圆域主猜想一个新的证明。

而其他形式的主猜想依旧是数论和算术代数几何研究的热点内容。”

……

“整体微分几何的核心问题之一是研究局部不变量和整体不变量的关系,研究曲率和拓扑的关系。

我们来考察曲面s,它上面有度量,也就有gas曲率k,如果曲面是紧致无边的话,gas曲率k就可以在整个曲面上进行积分。一个曲面不一定只容有一个度量,可以有另外一个度量,换了度量以后,相应的gas曲率k也就变了,但积分值与曲面的度量无关,而只与曲面的euler不性数x5有关。

对紧致无边的偶数维流形2“,如果它容有非正截面曲率的黎曼度量,那么,它的euler示性数满足

lnx2n0 1当截面曲率为负时,上式为严格不等式。

如果,流形具有kshler度量,在负截面曲率情形,猜想已被groov所证实,在非正截面曲率情形则被jostzuc以及caoxavier所证实。”